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Abstract: In recent years, extensive studies have been
conducted in the area of pumping state detection for
implantable rotary blood pumps. However, limited studies
have focused on automatically identifying the aortic valve
non-opening (ANO) state despite its importance in the
development of control algorithms aiming for myocardial
recovery. In the present study, we investigated the perfor-
mance of 14 ANO indices derived from the pump speed
waveform using four different types of classifiers, including
linear discriminant analysis, logistic regression, back propa-
gation neural network, and k-nearest neighbors (KNN).

Experimental measurements from four greyhounds, which
take into consideration the variations in cardiac contractil-
ity, systemic vascular resistance, and total blood volume
were used. By having only two indices, (i) the root mean
square value, and (ii) the standard deviation, we were
able to achieve an accuracy of 92.8% with the KNN
classifier. Further increase of the number of indices to five
for the KNN classifier increases the overall accuracy
to 94.6%. Key Words: Aortic valve non-opening—Non-
invasive—Ventricular assist device—Pump state detection.

Heart disease is the leading cause of death in the
world by claiming 17 million lives every year (1).
The World Health Organization predicted that by the
year 2030, 23.6 million people will die from heart
diseases (2). Due to the limited availability of donor
organs and limitations in drug therapies, many ven-
tricular assist devices (VADs) have been developed,
including pulsatile VADs and continuous flow VADs
or implantable rotary blood pumps (IRBPs). Among
these devices, the IRBPs have become increasingly
popular because of their smaller size and therefore
easier implantation.

Determination of optimal speed for an IRBP is
important to satisfy the varying physiological needs
of a patient. Normally, the ideal state is when there is

a net positive flow across both the aortic valve and
the pump, known as ventricular ejection (VE) (3–6).
Detrimental conditions, such as ventricular collapse,
may occur due to excessive unloading of the left ven-
tricle (LV), whereas underpumping may lead to
pump backflow and inadequate perfusion (7). Several
approaches have attempted to operate the pump at
the highest pump speed possible before the point
of LV collapses to ensure maximum end-organ
perfusion (8). However, in patients with potential for
myocardial recovery and weaning, partial unloading
may be more beneficial to ensure optimum LV
washout (9). Full unloading of the LV with the aortic
valve not opening for the entire cardiac cycle has
been reported to cause complications such as recir-
culation and stasis inside the LV cavity (10,11) as well
as aortic valve fusion (12).

Clinically, the aortic valve opening duration is mea-
sured using the M mode echocardiography while
aortic flow is assessed using the pulsed Doppler ultra-
sound at regular intervals (i.e., every few months)
after left ventricular assist device (LVAD) implanta-
tion. Studies on the identification of pumping states
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using noninvasive parameters have mainly concen-
trated on suction detection, often generalizing the
identified states into suction and nonsuction
(3,4,6,13), leaving limited studies on identifying the
aortic valve non-opening (ANO) state (3,5,14–17).
These studies have proposed one (5,14,16,17) to
three (15) ANO detection indices on data from
animal studies (3,5,17) as well as human patients
(14,15). It must be noted that although Karantonis
et al. (3) proposed seven indices for suction detec-
tion, only two of them are related to ANO detection.
The feasibility of the indices has been evaluated using
statistics (5,14,16,17) as well as classifiers such as clas-
sification and regression tree analysis (CART) (3)
and k-nearest neighbors (KNN) (15) with varying
degrees of success.

Generally, the previous studies have three main
shortcomings from the aspect of data, indices, and
classifier. Most studies have limited data variability
(3,5,14,15) which did not take into account variations
in preload, afterload, cardiac contractilities, and other
cardiovascular characteristics influencing the interac-
tion of the native heart and the LVAD. This led to a
simplistic approach where limited indices were
tested, albeit with very promising results.With regard
to classifiers, either none (5,14,16,17) or only a single
classifier was tested (3). A recent study claimed to
have tested multiple classifiers; however, they did not
explicitly state the types of classifiers used (15).

In the present study, we attempted to evaluate the
performance of 14 indices in detecting ANO, using
experimental data obtained from four greyhounds,
which spanned over a wide range of operating con-
ditions. These include variations in cardiac contractil-
ity, systemic vascular resistance (afterload), and total
blood volume (preload). These indices will then be
classified as either the ANO or the VE state using
four different classifiers, which includes linear dis-
criminant analysis, logistic regression, back propaga-
tion neural network, and KNN. From this study, we
will be able to identify which combination of indices
and classifier works best in ANO detection as well as
their shortcomings in ANO detection in different
cardiac conditions.

MATERIALS AND METHODS

Surgical procedure
Upon performing sternal split operation and

opening of the pericardium to expose the heart, dia-
thermy and bone wax were used to obtain hemostasis
(18). During the LVAD implantation procedure, the
region of the aorta where the outflow graft of the
pump was attached was isolated via a side-biting

clamp (18). With continuous suture method, the
outflow graft was attached to the aorta as an end-to-
side anastomosis after making an incision in the
aortic wall (18). By using a cylindrical cutter of
appropriate diameter, coring of the ventricular apex
was performed and the inlet cannula was sutured to
the apical myocardium (18). The pump and outflow
conduit were de-aired and both of them were con-
nected once the inlet cannula was in place (18). Small
doses of potassium chloride and amiodorone were
administrated to control ectopic beats (18).

This study was carried out in strict accordance with
the Code of Conduct for Scientific Procedures Using
Animals. The protocol was approved by the Alfred
Medical Research and Education Precinct Animal
Ethics Committee (AEC Approval No: E/0732/2008/
m). All surgery was performed under anesthetization
with propofol and isoflurane after premedication
with acepromazine and atropine. Implantation of
the pump was carefully executed without significant
arrhythmia or blood loss. All efforts were made to
minimize suffering and euthanasia was performed
upon completion of experimentation.

Data acquisition
Four healthy, anesthetized, open-chest greyhounds

were implanted with VentrAssist IRBP (Ventracor
Ltd, Sydney, NSW, Australia). Incorporated with a
third-generation centrifugal pump and novel hydro-
dynamic bearing that produces a characteristically
flat pump-head versus pump-flow curve (5), the VAD
uses apico-aortic configuration and its pump speed is
controlled by a proportional integral controller with
a time constant of approximately 3.5 ms (18). This
allows the impeller speed to be modulated by the
cardiac cycle (6). In the present study, cardiac cycle
time for all subjects under various conditions ranged
between 0.48 and 0.84 s (heart rate of 71 to 125 bpm),
and the respiratory frequency for the ventilator was
set at 12 to 14 breaths per minute.

Different pumping conditions (19) were under-
gone as the apex of the LV was inserted with the
inflow cannula, whereas the outflow cannula was
anastomosed to the ascending aorta. The greyhounds
were instrumented with indwelling catheters and dis-
posable Tru Wave pressure transducers (Edwards
Life Sciences Pty Ltd., Sydney, Australia) to obtain
readings of aortic pressure (AoP), inlet pressure and
left ventricular pressure (LVP), left atrial pressure
(LAP), vena cava pressure, pulmonary arterial pres-
sure (PAP), pump inlet pressure (INP), and pump
outlet pressure (OUP) (19). LVP was measured at the
proximal part of the left ventricle and LAP was mea-
sured from the left atrium (19). OUP was measured
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at the pump outflow cannula near the pump outlet
whereas measurement of INP was obtained at the
pump inflow cannula in proximity to the pump inlet
(19). Ultrasonic flow probes (Transonics perivascular
and tubing flow sensors) interfaced with the T106
flowmeter (Transonic Systems, Inc., Ithaca, NY, USA)
were placed around the ascending aorta to record
aortic flow rate (AoQ) and pump flow rate (18). The
sampling rate of the data acquisition system was set
to 4 kHz. In accordance with most noninvasive pump
state detection studies, the data were down-sampled
to 200 Hz (3).

Each greyhound experiment began with a speed
ramp under healthy conditions and the impeller
speed set point was increased in 100 rpm increments,
starting from 1600 rpm. At each speed set point, the
subsequent speed level was set only after all variables
reached steady state. Stability is assumed to be
achieved when central venous pressure and volume
in the venous chamber remained unchanged for at
least 20 min (18). This was then followed by various
perturbations on the cardiac contractility, afterload
and preload, as indicated from the low, medium, and
high levels of systemic vascular resistance as well as
total blood volume.

From the original healthy condition, a beta-
adrenergic blocking agent (metoprolol) was adminis-
trated, leading to a decrease in heart rate, cardiac
contractility, and cardiac output. To induce low
afterload with reduced contractility condition, injec-
tion of this drug was continued until either the base-
line cardiac output reached 50% of the healthy
condition, or until the aortic pressure dropped below
60 mm Hg at a speed of 1600 rpm (18). Additional
afterload levels, that is, medium and high, were
induced via the administration of metaraminol, which
increased the mean aortic pressure by approximately
20 mm Hg at each level of afterload. The rate of the
cardiotomy suction system was varied to alter the
total blood volume that led to different preload
levels, that is, low, medium, and high.

State identification
In the present study, the noninvasive pump speed

data were used to differentiate the VE state from the
ANO state. First, it was categorized into either of
these states using data obtained from three different
noninvasive sensors which serve as the gold standard.
These include the LVP, AoP, and AoQ (5,19). The
ANO state was identified based on the following
three conditions: (i) maximum LVP < AoP; (ii)
AoQ ≈ 0; and (iii) absence of dicrotic notch in the
AoP waveform (as shown from Fig. 1).

Pump speed waveform in the VE and ANO states
With increase in pump speed, pumping state

shifted from the VE state into the ANO state as seen
in Fig. 2. Changes in the speed amplitude can be
observed, where the range of pump speed data for
the VE state is generally larger compared with
that for the ANO state. The shape of the speed
waveform undergoes gradual changes as well. Com-
pared with the ANO state data, the VE speed wave-
form exhibited a more uniform spread of speed
amplitude, approximating a sinusoidal waveform
shape. However, in some data, a number of missing
peaks or slightly jagged peaks can be observed as the
ANO state is approached. More minor irregularities
started to appear as the signal transits from the VE to
the ANO state. As described in previous investiga-
tions (3,5), the ANO speed waveform demonstrated
missing peaks, saddles, dual peaks, or sometimes even
erratic waveforms (Fig. 3).

Determination of cardiac cycle
In order to extract the cycle-based indices from the

pump speed signal, determination of the cardiac
cycles was first performed on the data.The raw signal
was low pass filtered (10 Hz cutoff frequency) to
remove high frequency, after which a moving average
filter was applied. Each cycle was determined by
taking the consecutive alternate intersection points
between the filtered signal and the moving-averaged
filtered signal (3,6).

Different values for duration of moving average
have been tested (0.5, 1, and 2 s).When the waveform
is irregular and the moving average size is too small,
overestimation in the number of cycles occurs,
causing single imperfect peaks to be misidentified as
multiple cycles. In contrast, underestimation in the
number of cycles occurs if the moving average size is
too large, particularly in the case of baseline shift.
Figure 4 illustrates the effects of different moving
average size on the cycle determination. It was found
that moving average size of 1 s is the most efficacious
in determining the number of cycles. A total number
of 10 321 cycles of ANO data and 9976 cycles of VE
data were extracted from the raw data using this
method.

ANO indices
In the present study, we studied 14 indices, as

defined in Table 1, in which six have been used in
previous studies (3,15,16), whereas the remaining
indices were newly proposed in this study based on
their relationship with the existing indices. These
indices can be classified into five different classes.The
first class was related to the range of the cycle. The
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range (Ran1) index was selected as the ANO state has
been reported to have a smaller amplitude as com-
pared with the VE state (3). Aside from deriving the
range, we proposed two additional related indices,
that is, the lower range (Ran2) as well as the upper
range (Ran3).

The ratio of the lower range to the mean value
(Dir1), and ratio of the upper range to the mean
valve (Dir2), have been previously proposed by
Karantonis et al. (3) and Endo et al., respectively
(16,17).

The third class of indices is obtained based on the
statistical properties of the data which describe the
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FIG. 1. Determination of pumping states (ANO, upper figures; VE, lower figures) using three different conditions as shown in the three
different columns. In the first column, it can be seen that LVP (solid line) is lower than AoP (broken line) for the ANO state. In the second
column, it can be seen that AoQ net flow is close to zero for the ANO state. In the third column, it can be seen that there is an absence
of dicrotic notch in the AoP waveform for the ANO state.
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FIG. 2. Changes of state due to increase in pump speed. The
first two segments show samples of the VE states while the third
and fourth are samples of the ANO states.

0 0.5 1.0 1.5 2.0
2000

2150

2300

Time (s)

P
um

p 
S

pe
ed

 (
rp

m
)

0 0.5 1.0 1.5 2.0
1700

1800

1900

Time (s)

P
um

p 
S

pe
ed

 (
rp

m
)

0 0.5 1.0 1.5 2.0
1790

1810

1830

Time (s)

P
um

p 
S

pe
ed

 (
rp

m
)

FIG. 3. Typical types of ANO pump speed waveform. The ANO waveforms have a flat plateau with sharp peaks (left), dual peak (center),
as well as having saddle points (right).
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morphology of the speed waveform. Skewness (Sta2)
and kurtosis (Sta3) have been used in a previous study
(15). The standard deviation (Sta1) index, which
relates closely to skewness and kurtosis, was pro-
posed in the present study.

The fourth class was derived from the root mean
squared (rms) value (5,15). The crestfactor (Rms2)

index proposed by Granegger et al. (15) was defined
as the maximum value divided by the rms value. This
led us to propose two other related indices, that is, the
rms (Rms1) and the minimum divided by rms (Rms3)
index.

The last category of indices was proposed as minor
modification to the indices in the rms category. The

0 0.5 1.0 1.5
1960

1980

2000

2020

Time (s)

P
um

p 
S

pe
ed

 (
rp

m
)

Cy1a Cy2a Cy3a

Cy1b Cy2b

Cy1c Cy2c

0 0.5 1.0 1.5 2.0 2.5
1700

1800

1900

2000

Time (s)

P
um

p 
S

pe
ed

 (
rp

m
)

Cy1a Cy2a Cy3a

Cy1b Cy2b Cy3b

Cy1c Cy2c

filtered signal
averaged signal at 0.5s
intersection points at 0.5s
averaged signal at 1s
intersection points at 1s
averaged signal at 2s
intersection points at 2s

FIG. 4. Effects of moving average size on cycle determination. Cy indicates cycle while the number indicates which cycle it is. The moving
average size is as follows: a = 0.5 s, b = 1 s, and c = 2 s. The left figure shows a sample of irregular waveform where the moving average
size of 0.5 s overestimated the number of cycles. The right figure shows a waveform with a baseline shift where the moving average size
of 2 s underestimated the number of cycles.

TABLE 1. Description of ANO detection indices

Index Description Formula References

Ran1 Range max(x) − min(x) (3)
Ran2 Lower range mean(x) − min(x)
Ran3 Upper range max(x) − mean(x)
Dir1 Range/mean Ran1/mean(x) (16)
Dir2 Lower range/range Ran2/Ran1 (3)

Sta1 Standard deviation
( ( ( ))2x mean x

n

−∑

Sta2 Skewness
( ( ))

( 1)

3

1
3

x mean x

n Sta

−

−
∑ (15)

Sta3 Kurtosis
( ( ))

( 1)

4

1
4

x mean x

n Sta

−

−
∑ (15)

Rms1 Root mean square mean x( )2

Rms2 Maximum/rms max(x)/Rms1 (15)
Rms3 Minimum/rms min(x)/Rms1

Rmr1 Root mean and range mean x Ran( ) 1×
Rmr2 Maximum/rmr max(x)/Rmr1

Rmr3 Minimum/rmr min(x)/Rmr1

x represents the data within a cycle of pump speed.
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rms value (Rms1) was replaced by having the square
root of multiplication from the mean and the range
(Ran1) to give (Rmr1), the maximum value divided by
(Rmr1) to give (Rmr2) and the minimum value
divided by (Rmr1) to give (Rmr3).

Classification techniques
Two main types of supervised classifiers are avail-

able: (i) the parametric classifiers, where the data
distribution is assumed to be normal; and (ii) the
nonparametric classifiers, which do not make any
assumptions on the data distribution. In this study,
two parametric classifiers, namely linear discriminant
analysis (LDA) (13) and logistic regression (LR) (6),
as well as two nonparametric classifiers consisting of
the back-propagation neural network (BPNN) (4)
and KNN (15) were applied to the data.

Linear discriminant analysis finds a set of weights
that form a linear decision boundary based on the
distribution of the different classes. LDA maximizes
class discrimination by taking into consideration the
between-class variance and within-class variance.
Linear discriminant coefficient was thus produced
and probability of each test data being in a particular
class was calculated. This method does not require
any testing to find the optimal parameters. In spite
of this, many studies have shown that LDA
performance is comparable, if not better than other
more advanced classifiers (20,21).

LR finds a set of coefficients for the best fitting
function by minimizing cost function via gradient
descent. A regularization parameter, α is used in
order to prevent the problem of overfitting resulting
from the usage of multiple indices. In the present
study, we chose α = 0.01 as its performance was
similar to all other tested values (α = 0.01, 0.02, 0.05,
0.1, 0.5, and 1).

For the BPNN algorithm, error reduction in pre-
dicting the data set is done through iterative changes
to the network of nodes. Computation of cost func-
tion in an iterative manner takes into account the
number of hidden nodes, number of hidden layers, as
well as learning rate. The number of hidden nodes
plays a major role in determining the success of the
BPNN as too many nodes may result in overlearning
while too few nodes may result in insufficient ability
to learn. Hidden nodes of sizes 1, 2, 3, 5, and 10 were
tested. However, different learning rates (i.e., 0.1,
0.03, 0.01, 0.003, and 0.001), which play an important
role in determining whether the network could
approach the optimal minima, were tested. From our
study, we found that two hidden nodes with a learning
rate of 0.01 gives reliable performance.

Also known as nonparametric lazy learning algo-
rithm, the KNN approach classifies an object by
majority vote of its neighbors. No explicit training of
data is involved for this technique and the training
data are only used during the testing phase. The
indices are first normalized before the Euclidean
distance is used as a similarity measure to determine
their respective surrounding neighbors. The number
of neighbors, k, significantly affects the performance
of the classifier. A low k value may render the test
result highly susceptible to noise, while a high k
value may unnecessarily include points from other
classes (22). It was observed from our study that the
value of k required for optimal performance
increases with the addition of indices. By taking into
consideration such phenomenon, different k values
(odd numbers from 3 until 41) were heuristically
tested with cross-validation and k = 23 was finally
chosen.

During the implementation of all the classification
methods, a ten-fold cross validation was applied.
The average of the statistical measures from each
of these was taken to represent the classification
performance.

Experimental studies
Two experimental studies were performed. For

the first study, we attempted to determine the
performance of the individual indices using the dif-
ferent types of classifiers, in terms of sensitivity and
specificity.

In the second experimental study, we attempted to
find the best combination of indices for the four dif-
ferent types of classifiers using the sequential forward
floating selection (SFFS) method. Because we found
that different classifiers resulted in different sets of
optimal index combinations using the SFFS method,
we further performed a comprehensive study on the
performance of all possible combinations of two
indices on all the classifiers, resulting in a total of 364
combinations. Results showed that there are some
discrepancies in the two best indices given by SFFS
compared with that provided by the exhaustive search
on all possible combinations. Consequently, to search
for the best combination of more than two indices, we
applied SFFS starting from the best combination of
two indices provided by the exhaustive search.

RESULTS

Table 2 shows the performance of the individual
ANO detection index obtained from the four differ-
ent classifiers, expressed in terms of sensitivity, speci-
ficity, and overall accuracy. In general, most of the
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indices could achieve an accuracy of more than 70%
when used individually. In spite of this, the accuracy
was heavily skewed toward VE state.

The performance of the classifiers was evaluated
with regard to the following aspects: (i) total number
of indices with an overall accuracy exceeding 70%;
and (ii) total number of indices with both sensitivity
and specificity exceeding 65%. Based on the first cri-
teria, KNN was the best classifier, with 11 indices
achieving an accuracy above 70%, followed by
BPNN (10), LDA and LR (3 each). LR achieved the
best performance in terms of balanced sensitivity/
specificity, with three indices achieving both sensitiv-
ity and specificity above 65%, followed by KNN (1).
Both BPNN and LDA did not have any index which
fulfilled this criteria.

The performance of the individual indices was
assessed from two aspects: (i) the best possible accu-

racy from any classifier; and (ii) robustness with
respect to their accuracy across different classifiers.
With regard to the first aspect, Rmr2 and Rmr3 out-
performed other indices with accuracy of 75.8%, fol-
lowed by Dir1 (75.7%) and Rmr1 (74.9%). Rms1,
Rmr2, and Rmr3 are the most robust, with accuracy of
more than 70% from all the four classifiers. Dir2, Sta2,
and Sta3 were unable to achieve 70% accuracy with
any classifier.

Table 3 shows the best performance for all paired
combinations of indices obtained from the four dif-
ferent classifiers, expressed in terms of accuracy. The
best performance was achieved using Rms1 and Sta1,
with an accuracy of 92.8% and a sensitivity/specificity
of 90.0%/95.8%. Considering that the acceptable per-
formance is at least 90% accuracy, a total number of
24 different combinations of two indices can be used.
Among all indices, Rms1 can be considered as the

TABLE 2. Performance of the 14 individual indices using the four different
classifiers

LDA LR BPNN KNN

Ran1 68.0/50.3 (59.3) 67.6/51.1 (59.5) 47.9/97.2 (72.1) 60.1/86.5 (73.0)
Ran2 66.4/54.7 (60.6) 66.2/55.4 (60.9) 47.3/96.4 (71.5) 56.0/86.5 (71.0)
Ran3 68.6/47.2 (58.1) 68.3/48.3 (58.5) 49.3/95.1 (71.8) 61.4/85.0 (73.0)
Dir1 73.4/62.6 (68.1) 72.7/64.1 (68.5) 56.5/95.5 (75.7) 60.5/90.1 (75.1)
Dir2 62.5/54.8 (58.7) 62.6/54.6 (58.7) 51.1/65.6 (58.2) 57.3/56.1 (56.7)
Sta1 68.7/50.5 (59.7) 68.0/51.5 (59.9) 50.8/97.1 (73.5) 62.6/86.2 (74.2)
Sta2 63.4/50.8 (57.2) 63.3/50.8 (57.2) 51.1/64.8 (57.9) 58.2/57.0 (57.6)
Sta3 58.2/68.9 (63.5) 60.4/66.8 (63.6) 66.5/60.5 (63.5) 66.0/58.6 (62.4)
Rms1 55.9/93.1 (74.2) 56.8/91.1 (73.7) 61.2/82.4 (71.5) 63.4/85.8 (74.4)
Rms2 0.0/100.0 (49.1) 70.6/67.0 (68.8) 58.1/90.6 (74.1) 58.7/89.6 (73.9)
Rms3 0.0/100.0 (49.1) 73.1/61.4 (67.4) 57.5/93.6 (75.3) 61.3/88.6 (74.7)
Rmr1 63.3/44.1 (53.9) 63.3/44.4 (54.0) 44.9/95.6 (69.8) 67.7/82.4 (74.9)
Rmr2 58.8/91.7 (75.0) 65.7/76.5 (71.0) 54.8/97.5 (75.8) 60.4/90.5 (75.2)
Rmr3 59.3/90.7 (74.7) 65.8/76.2 (70.9) 54.8/97.5 (75.8) 60.3/90.1 (75.0)
≥70% 3 3 10 11

The results are shown as sensitivity/specificity (overall accuracy). The last row indicates the
number of individual indices that achieve accuracy of 70% and above for each classifier.

TABLE 3. The performance of combinations of two indices

Index Ran1 Ran2 Ran3 Dir1 Dir2 Sta1 Sta2 Sta3 Rms1 Rms2 Rms3 Rmr1 Rmr2 Rmr3

Ran1 — 76.4 76.2 91.2 76.6 76.9 77.4 76.8 92.0 87.4 87.9 91.2 91.0 91.0
Ran2 76.4 — 76.5 86.9 76.7 77.2 77.3 75.3 90.8 90.0 83.1 87.9 86.6 86.7
Ran3 76.2 76.5 — 89.1 76.8 77.4 77.6 77.3 92.0 85.5 91.1 87.6 89.3 89.4
Dir1 91.2 86.9 89.1 — 77.5 91.8 78.2 78.2 92.1 77.5 77.7 91.5 76.2 76.2
Dir2 76.6 76.7 76.8 77.5 — 77.6 63.2 66.0 78.5 77.7 77.7 78.0 77.3 77.3
Sta1 76.9 77.2 77.4 91.8 77.6 — 78.3 77.1 92.8 87.9 89.2 91.6 91.6 91.6
Sta2 77.4 77.3 77.6 78.2 63.2 78.3 — 67.0 78.7 78.0 78.4 79.0 78.2 78.1
Sta3 76.8 75.3 77.3 78.2 66.0 77.1 67.0 — 80.0 76.2 78.5 80.0 78.2 78.4
Rms1 92.0 90.8 92.0 92.1 78.5 92.8 78.7 80.0 — 90.7 91.8 92.1 92.1 92.1
Rms2 87.4 90.0 85.5 77.5 77.7 87.9 78.0 76.2 90.7 — 77.8 90.2 77.7 77.8
Rms3 87.9 83.1 91.1 77.7 77.7 89.2 78.4 78.5 91.8 77.8 — 90.2 77.7 77.8
Rmr1 91.2 87.9 87.6 91.5 78.0 91.6 79.0 80.0 92.1 90.2 90.2 — 91.4 91.4
Rmr2 91.0 86.6 89.3 76.2 77.3 91.6 78.2 78.2 92.1 77.7 77.7 91.4 — 75.8
Rmr3 91.0 86.7 89.4 76.2 77.3 91.6 78.1 78.4 92.1 77.8 77.8 91.4 75.8 —
>90% 5 1 2 4 0 5 0 0 10 2 3 8 4 4

The highest classification accuracy among the compared classifiers for each combination is displayed. The last row indicates the number
of combination sets that exceed 90% accuracy.
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best index to pair with as there are 10 combinations
involving Rms1 which could achieve an accuracy
above 90%.This is followed by Rmr1 (8), Sta1 (5), and
Ran1 (5). The three indices which performed poorly
individually, that is, Dir2, Sta2, and Sta3, also did not
perform well in the presence of multiple indices,
where none of their combination with other indices
achieved an accuracy exceeding 90%.

Figure 5 shows the decision boundaries of the four
classifiers in separating the ANO state from the VE
state. The decision boundaries formed by the four
classifiers are different from one another. The para-
metric classifiers (LDA and LR) formed straight lines
while the nonparametric classifiers have jagged lines,
which serve to optimize the classification task.

Table 4 shows the performance of the four differ-
ent classifiers with increasing number of indices
selected using the SFFS. With multiple indices, KNN
outperformed other classifiers, where it achieved a
sensitivity/specificity (overall accuracy) of 90.0%/
95.8% (92.8%) with only two indices. Further
increase in the number of indices for the KNN clas-
sifier increases the overall performance (sensitivity/
specificity [overall accuracy] of 92.6%/96.7% [94.6%]
with five indices). BPNN and LR have comparable
performance when two indices are included in the
classification process, but both of them showed neg-
ligible increase in performance with further increase
in the total number of indices.

Table 5 compares the training as well as implemen-
tation time for the four different classifiers. Among
all classifiers, only KNN is free of training. LDA
has the fastest training time of 4.69 × 10−3 s for an
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individual index and 8.25 × 10−3 s when two indices
are used, followed by LR, which requires 1.06 × 10−1 s
for an individual index and 3.70 s for two indices.
BPNN, which involves multiple iterations before the
network is trained, requires 72.8 s for an individual
index and 89.3 s for two indices.With regard to imple-
mentation time, KNN is the slowest, with 9.68 × 10−1 s
for an individual index and 1.1 s for two indices. All
the three remaining classifiers have very short imple-
mentation time in the range of 1 × 10−4 for one or two
indices.

DISCUSSION

With increasing evidence showing successful expe-
rience for prolonged periods of IRBP implantation
(23), much focus has been put on developing physi-
ologically responsive pump control strategies which
could promote myocardial recovery and subsequent
weaning of the IRBP patients. In patients with the
potential for myocardial recovery, partial unloading,
to minimize the risk of LV stasis and aortic valve
fusion, has been suggested to be more beneficial as
compared with full unloading (9). In order to achieve
such a control strategy, it is imperative to reliably and
accurately differentiate various physiologically sig-
nificant pumping states for any IRBP.

Despite extensive research in the field of pumping
state detection (3,5,14–17), a limited number of
studies have been conducted to automatically differ-
entiate ANO from the VE state. In one of the earliest
studies performed on three acute ovine models, Ayre
et al. (5) proposed the state transition index, defined
as the ratio of the difference in the maximum minus
the rms value to the difference in the mean speed
between two successive cycles to be a good index for
ANO detection. In another study, Endo et al. (16,17)
found that the index of motor current amplitude
(equivalent to Dir1), calculated as the ratio of the
current amplitude to the mean current, was able to
detect the transition point between partial assist and
full assist. Although Dir1 performed reasonably well
in the present study with an accuracy of 75.7% indi-
vidually, its absolute value was shown to be highly

dependent on cardiac contractility and afterload (16),
thus affecting intersubject robustness.Although these
studies provide a platform for further research, they
have a common limitation where no automated
system for classification was provided and thus a sta-
tistical basis for comparison could not be made (3).

In order to account for the large variations in
the waveform patterns, Karantonis et al. (3) and
Granegger et al. (15) have proposed methods using a
combination of several indices. Employing a CART
on six ex vivo porcine experiments using the
VentrAssist pump (same model as the present study),
Karantonis et al. reported a specificity/sensitivity of
100%/100% in detecting the ANO state. However,
the two indices used in their study which were related
to the ANO state, that is, Ran1 and Dir2, could only
achieve an accuracy of 73.2 and 58.7% respectively, in
the present study when applied individually, and an
accuracy of 76.6% when combined together. The
main reason behind the large discrepancy between
their reported performance and our results is that
their experimental measurements, obtained from
healthy pigs, have limited data variability. We found
from our results that whereas Dir2 performed poorly
in all scenarios, the absolute value of Ran1 was
substantially affected by different physiological
conditions. This revealed that different levels of per-
turbations in the cardiovascular system (such as sys-
temic vascular resistance and contractility) need to
be taken into consideration in the experiments to
ensure robustness of the classification approach.

Based on their visual observation of the pump flow
signal, Granegger et al. (15) proposed three indices
for ANO detection, namely skewness (Sta2), kurtosis
(Sta3), and crest factor (Rms2). The combination of
indices was implemented with a KNN approach using
both a numerical model and animal experiments, and
resulted in an accuracy of 95%. However, when the
same indices were applied on the pump speed data in
the present study, we could only achieve an accuracy
of 84.3%. Interestingly, while Sta2 and Sta3 (which
describe the morphology of a particular waveform)
showed relatively poorer performance when com-
pared with other indices, their close counterpart from
the same class, that is, Sta1 proposed in the present
study, performed reasonably well both individually as
well as in combination with other indices. The differ-
ence in performance using the same indices on two
different sets of data may be caused by a difference in
the type of waveforms (flow signal vs. speed signal) or
pump models (axial vs. centrifugal). For example,
crest factor (Rms2) proposed by Granegger et al. (15)
may be more sensitive to changes in waveform closer
to the x-axis such as pump flow, than that with

TABLE 5. Comparison of training and implementation
time for different classifiers

Classifier

Training time (s) Implementation time (s)

1 index 2 indices 1 index 2 indices

LDA 4.69 × 10−3 8.25 × 10−3 1.42 × 10−4 1.51 × 10−4

LR 1.06 × 10−1 3.70 7.85 × 10−5 8.61 × 10−5

BPNN 7.28 × 10 8.93 × 10 1.02 × 10−4 1.10 × 10−4

KNN 0 0 9.68 × 10−1 1.10
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relatively higher magnitudes such as pump speed.
The main drawback of their study is the use of inva-
sive flow sensors, which may affect system reliability
and increase cost.

With regard to the performance of classifiers, the
present study showed that KNN outperformed other
classifiers, particularly with an increasing number
of indices. This is consistent with the findings by
Granegger et al. (15) who claimed to have evaluated
multiple classifiers, although it is unclear which types
of classifiers were tested in their study. Generally, the
parametric classifiers (LDA and LR) have short
training (less than a few seconds) and implementa-
tion time (in the range of 10-4 s). In contrast, BPNN
has comparable implementation time but long train-
ing time (80 s).

Despite the high accuracy of KNN, the implemen-
tation time of this classifier, approximately 1 s, is com-
paratively longer than other classification techniques
applied in this study. Although ideally it is desirable
to have single beat classification in real time, common
medical experience with human subjects assisted by
rotary VAD (Dr. Robert Salamonsen, The Alfred
Hospital, Melbourne, Australia) indicates that an
estimate of valve opening at every 5 to 10 heart beats
is sufficient.This is evident in clinical observation (12)
that reported that duration of the device placement
of four subjects with partial aortic valve fusion ranges
from 26 to 689 days. In another further study con-
ducted in 17 VAD-treated patients (24), commissural
fusion of aortic valves of varying degree were found
in implantation that ranges from 4 to 787 days. ANO
occurrence is a gradual process and hence having a
multiple beat system as opposed to single beat
classification does not critically affect its overall
effectiveness.

It was observed that for all the tested classifiers,
there is a portion of data that misclassifies consis-
tently. Further investigation has revealed that the
false negative originated from a particular subject
with exceptionally high systemic peripheral resis-
tance.This has affected the amplitude range and mean
pump speed data, thereby influencing the perfor-
mance of the proposed index combination. As com-
pared with other subjects, the transition threshold
from VE to ANO state for this subject was greatly
increased. Data of VE state in the subject were mis-
takenly classified as ANO state during the study, thus
decreasing the overall performance of ANO detec-
tion algorithm.

CONCLUSION

In this study, we have tested 14 aortic valve non-
opening indices using four different types of classifi-

ers on 10 321 cycles of ANO data and 9976 cycles of
ventricular ejection data, over a wide range of cardio-
vascular system operating conditions. Using only two
indices, (i) the root mean square value, and (ii) the
standard deviation, we were able to achieve an accu-
racy of 92.8% with the KNN classifier. A further
increase of the number of indices to five for the KNN
classifier increases the overall accuracy to 94.6%.
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